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Slow Streets and Dockless Travel: Using a Natural 
Experiment for Insight into the Role of Supportive 
Infrastructure on Non-Motorized Travel 

EXECUTIVE SUMMARY  

In the early stages of the COVID-19 pandemic, cities across the U.S. moved street space from 
automobile to pedestrian and non-motorized uses. In addition to “pop up” outdoor dining, 
several cities initiated slow street projects which included reducing car travel lanes, increasing 
areas devoted to non-motorized travel, and taking measures to slow vehicle traffic while 
prioritizing non-vehicle modes. Slow streets are a repurposing of existing infrastructure to 
support uses such as dining and shopping and to support non-car travel modes. At times these 
were infrastructure treatments (often temporary such as paint or signage) and in some cases 
policy such as allowing pedestrian use of street space. These programs were implemented at a 
speed and scale never before seen in the U.S. To give two examples, in the late spring and early 
summer of 2020, Oakland implemented 74 miles of slow street networks and Los Angeles 
implemented 50 miles. These and similar programs in other cities amount to what are often 
several years of planning and implementation compressed into weeks or months. 

We use this large, and prior to COVID-19, unexpected slow street program to study the impact 
of slow streets on non-motorized travel. We use a quasi-experimental approach, comparing 
non-motorized travel on slow streets with non-motorized travel on similar “control” streets 
which were not converted into slow streets. We use dockless scooter travel for our empirical 
analysis. Throughout this report, when we use the phrase “dockless” we are referring to 
scooter data and hence to dockless scooter travel. We use a “before-after” approach, 
examining the impact of slow streets in a treatment and control group, before and after slow 
street implementation. We use candidate streets that were not converted to slow streets as 
controls for the first analysis, comparing changes from 2019 to 2020 for both the slow streets 
and the control group (a before-after approach with a differences-in-differences model.) In two 
cities, we also use later implemented slow streets as controls for the earlier implemented slow 
streets (a before-after approach with a fixed effects panel model). Previous studies have not 
had an opportunity to study the link between non-car travel and large non-car infrastructure 
projects. The scale of slow street implementation during the pandemic provides a rare 
opportunity to observe what would happen if meaningfully large street networks were adjusted 
to better accommodate non-car travel – not by eliminating automobiles but rather by 
implementing the traffic calming approaches that were common in COVID-19 slow street 
programs. 

Because it is not possible to gather data on walking or bicycling activity retrospectively (i.e., 
before slow street implementation) ex post, we partnered with Lime, a provider of dockless 
scooters, to use their data on scooter travel on the treatment slow streets and a control group 
before and after slow street implementation. Lime maintains historical data on trips, allowing a 
before/after comparison that would not be possible for walking, bicycling, or other non-car 
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modes. Our results give insights into how slow streets influenced dockless scooter travel. 
Importantly, we use dockless scooter travel as an example of a non-car mode. We believe that 
our results – which show that slow streets are associated with increases in dockless scooter 
travel – suggest that supportive infrastructure increases non-car travel more broadly. The 
results likely generalize to other non-car modes, and our focus on dockless scooters should be 
viewed as a focus on one example of non-car travel. 

We studied four cities: Los Angeles, Oakland, Portland, and San Francisco. We used two 
methodological approaches: differences-in-differences and panel fixed effects regression. For 
both approaches, our observations are mid-points of street blocks, and our dependent variable 
is a screenline count of the number of scooter trips passing the midpoint either in a week 
(panel regression) or a month (differences-in-differences). For both differences-in-differences 
and panel approaches, we classified blocks as treatments once a slow street network was 
implemented in the block. We had ready control groups in Oakland, Los Angeles, and San 
Francisco. Each of those three cities had networks that were considered for slow street 
implementation but were not implemented (Los Angeles and San Francisco) or an on-street 
bike-lane network that, according to the city, was prioritized for slow street implementation 
but not implemented (Oakland). For the panel data analysis, we used later implemented slow 
streets as the control group for earlier implemented slow streets. Due to timing of the 
implementation and the nature of the slow-street programs, the panel analysis was only 
possible in Portland and San Francisco. 

We consistently found an association between total dockless trip counts and slow street 
implementation. In all cities except Los Angeles, the total trip counts increased after slow street 
implementation, relative to control groups, in both the differences-in-differences and panel 
analysis. In Los Angeles, we found positive impacts of slow streets on trip counts at specific 
times of day (e.g., weekday midday, weekend night time) but not in total trip counts. We 
compared the treatment effect (the association between slow street status and increases in 
dockless trips) to 2019 (pre-treatment) slow street trip counts, and find that in the differences-
in-differences analysis, slow street implementation increased dockless trip counts by 54.78% in 
Oakland, 22.16% in Los Angeles, and 74.5% in San Francisco after controlling for the relevant 
covariates. These treatment effect sizes were smaller in the panel analysis but still statistically 
significant: 10.77% in Portland and 16.75% in San Francisco. Overall, we found statistically 
significant and meaningfully large associations between slow street implementation and 
increases in dockless scooter travel in all four study cities. We believe this is compelling 
evidence that networks of slow streets can increase non-motorized travel.
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Introduction  

In early 2020, the COVID-19 pandemic presented local governments and transportation 
agencies with a crisis. As stay-at-home orders were issued in order to stymie transmission of 
the COVID-19 virus, residents of cities faced a problem of limited access to safe spaces in which 
to exercise, recreate, and travel without cars. Accordingly, local governments across the United 
States set up temporary street closures, referred to throughout this work as Slow Streets, 
wherein car traffic was limited to local access and parking and streets were shared with 
pedestrians, cyclists, and those using other forms of active transportation such as e-scooters 
(Combs & Pardo 2021). While not without pre-pandemic antecedents (see, for instance, 
cyclovias described in Landgrave-Serrano & Stoker 2022, car-free zones more generally 
described in Pucher, et al. 2010), these Slow Streets proliferated at an unprecedented rate 
during the first year of the pandemic. 

While originally implemented as a temporary measure, Slow Streets have the long-term 
potential to reduce traffic congestion and emissions, provide low-cost access to park-like spaces 
in underserved communities, and promote healthy and active lifestyles by supporting active 
transportation. Thus, discussion has turned to whether to keep Slow Streets as traffic levels 
have returned close to the pre-pandemic norm. The rapid implementation of Slow Streets 
programs allows for a natural experiment to assess the impact of traffic restrictions on travel 
behavior. However, there is still little quantitative research on Slow Streets (Kim 2022 points 
this out). Therefore, the current moment is crucial in empirically evaluating the impacts of Slow 
Streets programs around the country. 

In investigating this question, we can turn to prior research on cycling-supportive street 
interventions. A rich literature already suggests that bicycle infrastructure provision results in 
increased bicycling. In a 2010 literature review, Pucher et al. (2010) found strong evidence from 
139 international studies that pro-bicycling infrastructure, policies, and programs successfully 
increased bicycling. A study of new protected bicycle lanes in five US cities found that more 
trips were taken on these routes and that they induced more bicycling overall (Monsere et al., 
2014). Furthermore, safe, separated bicycle infrastructure leads to improved safety outcomes, 
for bicyclists as well as drivers (Marshall & Ferenchak, 2019). 

While the majority of this research was performed outside of the COVID-19 context, there is 
evidence that the relationships observed in these pre-pandemic studies hold true during the 
pandemic as well. A study of European cities, using a difference-in-differences modeling 
approach that used the abrupt implementation of temporary bicycle lanes as a natural 
experiment, found that the city’s interventions led to large increases in cycling at the city level 
(Kraus & Koch, 2021). 

Micromobility, defined here as small, low-speed transportation devices which are human-
powered and may be electronically assisted, has seen far less attention in the literature. The 
bicycling literature can help provide us some insight into the relationship between supportive 
infrastructure and other micromobility modes, but there is currently a clear gap in the 
literature. 
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In this project, we use data from Lime, a private shared micromobility provider, to implement a 
quasi-experimental design evaluating the success of Slow Streets programs in Portland, 
Oakland, San Francisco, and Los Angeles. Because our data are scooter trip counts, when we 
use the phrase “dockless travel” we are referring to scooter trips and, in the empirical analysis, 
to our data from Lime. Comparing scooter trip count levels before and during the pandemic 
between treated street segments and control segments, we find that trips along treated (Slow 
Streets) segments increased substantially compared to their untreated counterparts. We 
suggest that these results are likely to be generalizable to bicycles and other non-car and 
micromobility modes and that cities consider ways to expand their Slow Streets programs to 
induce further non-motorized travel. 

Literature Review 

The Covid-19 pandemic has affected many aspects of daily life, and travel is no exception. Soon 
after the pandemic began, a large amount of research emerged to analyze the impact of COVID-
19 on travel behavior. While it is obvious that the way people move changed during the 
pandemic, the scope and extent of such changes differ by transportation modes. Patterson et 
al. (2021) evaluated the impact of COVID-19 movement restrictions on motorized and non-
motorized travel using time-series models. The research found that while both motorized and 
non-motorized travel declined after the pandemic, motorized travel was found to recover faster 
than non-motorized travel. 

Further, bicycling has been a more resilient mode of transit than traditional public 
transportation during the pandemic. Teixeira and Lopes (2020) analyzed subway and bike share 
system data to compare how COVID-19 differentially affected public transport and bike share 
ridership. According to the study, bike share has shown higher resilience than the subway with 
a smaller drop in its ridership and increased travel time. Teixeira and Lopes (2020) also found a 
modal substitution effect between the two modes – subway to bicycle. Buehler and Pucher 
(2021) analyzed the change in cycling levels between 2019 and 2020 among 11 European 
countries and regions of the USA and Canada. According to the study result, cycling levels in the 
study area mostly increased except for a few exceptions, with higher growth on the weekends. 
Buehler and Pucher (2021) expect the new cycling trend will persist even after the pandemic, 
necessitating continual support from governments in developing relevant infrastructures, 
policies, and programs. 

Older literature points to a positive relationship between supportive infrastructure and 
micromobility. Regarding the impact of relevant infrastructure or policies on micromobility, 
Buck and Buehler (2012) analyzed the association between bikeshare usage and the existence 
of bike lanes by using Capital Bikeshare data, and the research found a statistically significant 
and positive correlation between the bike lanes and bikeshare ridership. In their extensive 
literature review, Pucher et al. (2010) also concluded that public policy plays a crucial role in 
encouraging cycling behaviors of people. 

As many cities implemented strategies to address the pandemic, opportunities for 
unprecedented natural experiment settings were identified to analyze the impact of new policy 
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or infrastructure. The implementation of temporary bike lanes provided a natural experiment 
setting for Kraus and Koch (2021) to investigate the association between bike-friendly 
infrastructure and cycling with a generalized difference in differences approach. The study used 
pop-up bike lanes as a treatment finding that pop-up bike lanes have led to an increase in 
cycling activity in European cities. Lin et al. (2021) examined the impact of COVID cycling 
infrastructure on the accessibility to various essential places by comparing cycling level of stress 
with and without COVID cycling infrastructure. The research concluded that COVID cycling 
infrastructure provided an increased but spatially heterogeneous accessibility to places. In 
Tucson, Landgrave-Serrano and Stoker (2022) performed a before-after analysis on Slow Streets 
using a set of controls chosen manually and inspected for balance along micromobility-
supportive census characteristics. They find that, while Slow Streets and controls did not differ 
significantly prior to treatment, they diverged during the pandemic with a positive and 
significant correlation between Slow Streets treatment and both pedestrian and micromobility 
levels. As Kim (2022) points out, there is a need for more of such pre-post empirical studies to 
assess the efficacy of Slow Streets. 

In addition to cycling, researchers have explored the dynamics of e-scooters. Thigpen (2020) 
investigated the case of 5 cities (Berlin, London, New York City, Seattle, and Seoul) with a 
survey, finding that respondents used shared scooters more frequently during the pandemic 
than before. Also, the survey result showed that the increased usage of e-scooters is likely to 
continue post-pandemic. The respondents also indicated a strong support for Slow Streets. 

Over two years since the onset of the COVID-19 pandemic, there is an open question of 
whether Slow Streets should be a permanent fixture in cities. Along similar lines, Noland et al. 
(2022) find mixed but generally supportive survey results for COVID-19 street closures in New 
Jersey. Particularly in areas where the interventions happened, they find both positive opinion 
towards the street closures as well as increased walking activity during the pandemic.  

In a theory-building work situating Slow Streets in (or against) the tactical urbanism literature, 
Kim (2022) notes that Slow Streets were seen as temporary measures during the pandemic, but 
they have been called for before the pandemic and some believe they should be permanent 
fixtures. Kim characterizes the argument against them along two lines: firstly, that the 
pandemic was already complicated and that street closures only added to the complication; 
and secondly, that the benefit was divided along class and race lines, since those in 
underserved communities were less likely to utilize Slow Streets for recreation – largely since 
they were still required to commute to work. At the outset of the pandemic, residents were 
concerned that Slow Streets would become a gathering place for residents of other 
communities. In Los Angeles, for example, Slow Streets locations were not divulged publicly, 
leaving their dissemination to the local organizations that applied for them. 

At the same time, Macfarlane et al. (2022) perform a location choice model analysis in Alameda 
County and find both a benefit from Slow Streets as well as a greater benefit for marginalized 
residents. From a different angle, Slow Streets and similar initiatives may have the potential to 
increase equity so long as equity is a focus. Marcus, et al. (2021) highlight the Slow Streets 
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program in San Francisco which was implemented in conjunction with other equity measures 
like a safety initiative at access points to essential services. Slow Streets have been argued for 
and against, but the preponderance of evidence appears to support them in both public opinion 
and micromobility outcomes. However, with a few exceptions, empirical evaluation is missing 
from this discussion due to their recency. With the continuation of Slow Streets in some cities 
and its consideration in others, it is essential to quantitatively assess the impact of Slow Streets 
on all forms of non-motorized travel. 

The implementation of slow streets during the pandemic was intended to provide a safer, 
supportive infrastructure for people to walk, bike, and ride other non-motorized vehicles, and it 
provides a natural experiment setting. In this paper we contribute to the existing literature by 
providing an analysis of the impact of supportive infrastructure on e-scooter travel using the 
cases of San Francisco, Oakland, Portland, and Los Angeles. 

Research Approach and Data 

Approach A: Difference-in-Differences Analysis 

We approach our research question with two quasi-experimental strategies. In the first, we 
compare the difference between changes in monthly trip levels from 2019 to 2020 in treated 
and control segments. We obtained a set of slow streets in three cities (San Francisco, Los 
Angeles, and Oakland), that had a set of segments which were viable for slow streets but were 
not ultimately implemented (San Francisco and Los Angeles) or a ready control group that was 
the larger target for implemented slow streets (Oakland), creating a possible set of treatment 
street segments (those converted to slow streets) and control street segments (those 
considered for slow street programs, but which were not converted into slow streets). 

Since Lime was not operating in San Francisco in July 2019 nor in Oakland in November 2020, 
we use trip counts in July 2019 and 2020 for Oakland and November 2019 and 2020 for San 
Francisco, in order to preserve a yearly comparison and mitigate seasonality effects. For Los 
Angeles, we present the analysis for November 2019 and 2020 since the Lime scooter fleet 
deployment rate in November 2020 was much more stable than in July 2020. 

For the treatment group, we use segments which had been implemented as slow streets by July 
1st, 2020, for Oakland or November 1st, 2020, for San Francisco and Los Angeles. For controls in 
San Francisco, we use all slow streets which were candidates to become slow streets but were 
not implemented due to lack of community support or issues with the fire department and 
transit, as indicated in correspondence with SFMTA. In Oakland, since slow streets were chosen 
from the pool of neighborhood bikeways, we use the on-street neighborhood bikeways which 
were not chosen as slow streets.  

In Los Angeles, we use a set of streets which were recommended by local organizations and 
discussed at neighborhood council meetings but not implemented by our study period. This 
information was tracked and provided by Streets for All, an advocacy group. Similar to the set 
of candidate streets in San Francisco, these streets followed the initial process for becoming a 
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Slow Street, but were ultimately not recommended by a neighborhood council or implemented 
by LADOT by the study period. 

Since we are running a differences-in-differences approach, a crucial assumption of our first 
strategy is the parallel trends assumption: that in the counterfactual scenario, where no streets 
became Slow Streets, outcomes in both the treatment and control group would have followed 
the trend that we observed in the control group. Therefore, we need to be sure that our 
treatment and control groups are exchangeable in order to trust our effect estimates. That is, if 
the control streets had become Slow Streets and the treated streets had not, we would expect 
to see the same change in trends for the control group that we observed in the treated group. 

In order to investigate the similarity between our treatment and control groups, we first inspect 
the pre-pandemic trip levels (Table 1) and covariate balance of each group (Table 2), with mixed 
results. In Oakland, we see the largest disparity between both pre-treatment trip levels and 
factors related to trip generation, our covariates. In San Francisco, our treatment/control group 
balance is more encouraging, since pre-treatment trip levels are closer and all trip-generating 
factors other than employment density are similar. In Los Angeles, the similarity between 
treatments and controls is striking, with both trip levels and trip-generating factors being nearly 
identical. 

Since the control streets in Los Angeles were not provided by citywide agencies but suggested 
by local organizations to neighborhood councils, we also inspect the streets in Los Angeles for 
eligibility within Slow Street guidelines. Per discussion with LADOT, streets must have been 
classified as local, residential, or collector in order to be implemented as Slow Streets. We 
visually inspected each street segment in our data against an LADOT street classification layer in 
GIS and found one major area and three minor areas where street segments did not follow 
these guidelines. In Koreatown, we find nine blocks in the control group which are classified as 
modified secondary streets. Each of these is on Oxford Avenue between Oakwood Avenue and 
James M. Wood Boulevard. This street is highly residential with bike lanes to the north, and 
runs past the backside of a large music venue and grocery store to the south. However, this 
stretch in the south is otherwise unremarkable and relatively quiet. We also find five control 
blocks in Hollywood (Yucca Street and Bronson Avenue), six control blocks in Palms (National 
Boulevard), and five treatment blocks in Highland Park (Monte Vista Avenue, Avenue 59 N, 
Piedmont Avenue) along modified secondary streets. We include models below both with and 
without these streets. 

Approach B: Fixed Effect Panel Regression Model 

We include several covariates in our DID analysis to control for observable built environment 
differences in the treatment and control segments. Yet in general, the exchangeability between 
control and treatment segment is always a point of question for the validity of difference-in-
differences approaches. For that reason, we use later implemented slow streets as the controls 
for earlier implemented slow streets as an additional test. Lime provided trip counts data 
aggregated at weekly level from May 11, 2020, to December 7, 2020, which is a 31-week 
timeline.  
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In the second strategy, we use a panel dataset of those weekly trip counts in 2020. In this 
strategy, instead of using a control group of segments which did not become slow streets, we 
leverage the staggered rollout of slow streets to use those which were implemented earlier as 
the treatment group and those which were implemented later as controls in a panel data 
analysis. 

In the panel analysis, we did not use Oakland since all Slow Streets were implemented by June 
2020, not providing a meaningful “later implemented” control group. Similarly in Los Angeles, 
the rollout of Slow Streets was not suitable for a panel analysis. Due to the size and spatial 
variety of Los Angeles, our analysis revealed that the panel data approach would benefit from 
analyzing neighborhoods within Los Angeles separately – to avoid matching “early 
implemented” slow streets in one part of that large city with “later implemented” slow streets 
in a distant location in the same city. However, most neighborhoods in Los Angeles were 
implemented at once or in two waves close together in time. For that reason, we did not move 
forward with a panel analysis of Los Angeles.  However, we did add Portland to the panel 
analysis since they have a longer and more even rollout of slow streets, noting that Portland did 
not have a ready control group for DID analysis. 

Data Sources and Cleaning 

This project relies on two scooter trip count data aggregations provided by Lime, with which we 
compile two datasets. The first comprises geographic scooter trip count data for July 2019, 
November 2019, July 2020, and November 2020. Each segment is aggregated monthly for 4 
time periods: AM peak (6 am to 9 am), midday (9:01 am to 2:59 pm), PM peak (3 pm to 6 pm), 
and night (6:01 pm to 5:59 am the following day). The data is further split by 
weekday/weekend, with weekday including Monday, 6 AM through Friday, 6 PM. Table 1 
summarizes the descriptive statistics of the data.  
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Table 1. Descriptive Statistics of Monthly Trip Counts in Oakland, San Francisco, and Los 
Angeles 

 Number of 
Segments 
 

mean 
screenline 
trip 
counts 

median 
screenline 
trip 
counts 

Standard 
deviation of 
trip counts 

Max trip 
counts 

Oakland 

July 2019 Treatment 
163 

108.99 35 431.30 3327 

July 2020 Treatment 12.73 2 61.54 477 

July 2019 Control 
475 

289.66 79 531.66 3398 

July 2020 Control 24.69 6 51.87 447 
San Francisco 

November 2019 Treatment 
285 

32.82 9 69.77 957 

November 2020 Treatment 36.29 15 59.10 625 

November 2019 Control 
413 

61.65 6 181.53 1693 

November 2020 Control 40.67 9 100.74 952 
Los Angeles 

November 2019 Treatment 
547 

91.44 19 162.51 917 

November 2020 Treatment 36.01 5 74.76 406 

November 2019 Control 
512 

111.13 26 220.66 2243 
November 2020 Control 35.43 5 69.59 511 

For the monthly aggregated dataset, we also include covariates representing employment 
density, amenities, distance to downtown, age composition of local residents, and roadway 
type. Therefore, both datasets consist of observations of scooter trip counts at each segment-
time along the slow streets and controls in each city during the respective study periods. 

In Oakland, San Francisco, Los Angeles, and Portland Slow Streets locations and implementation 
dates were provided directly by Oakland Department of Transportation (OakDOT), San 
Francisco Municipal Transportation Authority (SFMTA), Los Angeles Department of 
Transportation (LADOT), and Portland Bureau of Transportation (PBOT), respectively. The 
scooter trip counts represent a sum of all scooter trips which pass a screenline in the middle of 
the block: for example, if a street runs east to west, then the total number of scooter trips 
which cross a north-south screenline at the middle of the block during a given time period 
would represent the dependent variable of scooter trips for that segment-time. For our 
independent variable of interest, slow street status, we use the implementation dates provided 
by each city’s transit agency. For any segment-time observation (a street segment, i.e., block, at 
a given time, i.e., week or month) along the slow streets network, any observation whose 
implementation date is prior to the date of the observation is considered to be treated. 
Further, in our panel analysis, we remove segment-times that were treated during the week of 
observation. This preserves our stable unit treatment value assumption, since if a segment was 
treated midweek, then it was both treated and untreated during the week of observation. In 
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our difference-in-difference analysis, any segments treated during the respective month of 
observation were similarly removed from the analysis. 

For a robustness check of the analysis, we also added covariates to the difference-in-differences 
analysis. Those covariates include employment density, distance to downtown, number of 
amenity facilities within 200 meters, percentage of population aged between 15 to 35, and type 
of roadway. Those covariates were chosen based on previous studies in the literature that 
showed associations between those variables and dockless scooter trip generations (e.g., Bai 
and Jiao, 2020.) 

For employment density, we use an aerial interpolation to represent the weighted average of 
jobs per square kilometer near each block midpoint. We start by joining the total jobs figure 
from each block group in the Longitudinal Employer-Household Dynamics (LEHD) Origin-
Destination Employment Statistics (LODES) Workplace Area Characteristics 2018 data to 
National Historic Geographic Information System (NHGIS) geographical block group boundaries. 
Next, we divide total jobs by land area in square kilometers. Finally, we create a 1-kilometer 
circular buffer around each block midpoint and take the weighted average of each block 
group’s employment density, with weights representing the percentage of the circular buffer 
made up by each block group. This method results in a weighted average of jobs per square 
kilometer such that the weight of each block group is directly proportional to the amount of 
land it covers within 1 kilometer of the segment midpoint in question.  

Using the employment density data above, we calculate a downtown in each city representing 
the centroid of the block group with the highest employment density. Then, a distance in 
meters to the nearest downtown was computed from each segment midpoint. This represents 
our distance to downtown covariate.  

Next, we pulled all amenities within the four cities from the OpenStreetMap (OSM), a free, 
online geographic database, as of October 2021 a python package that helps to download 
geospatial data from OSM (OSMnx). We filter the amenities to include only establishments 
serving food or beverages with at least 50 observations between all four cities, comprising 
'restaurant', 'cafe', 'fast_food', 'bar', 'pub', 'ice_cream', 'nightclub', 'marketplace', and 
'food_court'.  Finally, we create a 200-meter circular buffer around each segment midpoint and 
take the sum of the amenities contained within. Therefore, our amenities covariate represents 
the total number within 200 meters of each block midpoint. 

For the age composition of local residents, we use a similar aerial interpolation method to our 
employment density covariate. Instead of calculating employment density, we use American 
Community Survey (ACS) 2018 5-Year estimates to calculate the percentage of residents in each 
block group aged 15-35. We then use a 1-kilometer circular buffer to calculate a weighted 
average of the percentage of young people in each block group in the same manner as 
employment density. Therefore, our age composition covariate represents the weighted 
average of the percentage of residents between ages 15-35 within 1 kilometer of each segment 
midpoint.  
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Finally, since the Slow Streets locations were drawn on the OSM network, we kept the 
‘highway’ category in the OSM data to use as an ordinal variable representing roadway type. 
These categories include motorway (e.g., freeways), trunk (e.g., undivided highway), primary 
(e.g., large, multilane roads), secondary (smaller roads), tertiary (smaller streets), residential 
(smaller, quieter streets linking to housing), and unclassified (small streets similar to residential 
but not linking to housing). The descriptive statistics of covariates can be found in the Table 2 
and Table 3 below. 
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Table 2. Descriptive Statistics of Covariates in Oakland, San Francisco, and Los Angeles 

Oakland 

 Variable Employment 
density 

Distance to 
downtown 
(meters) 

Number of 
amenities 

Percentage of 
population 
aged between 
15 to 35 

Treatment Mean 3396.94 3677.94 1.40 33.54 

Min/ 
Max 

373.53/ 
23397.92 

243.95/ 
7119.25 

0/ 
28 

22.35/ 
42.81 

Std. dev 5025.76 1745.24 3.84 4.53 
# of obs 163 

Control Mean 4947.31 4108.48 4.21 31.19 

Min/ 
Max 

72.05/ 
23882.28 

235.17/ 
14290.9 

0/ 
53 

11.56/ 
45.80 

Std. dev 6255.65 3110.56 8.12 7.16 
# of obs 475 

San Francisco 

Treatment Mean 3552.61 6347.64 3.73 32.15 

Min/ 
Max 

608.59/ 
30579.09 

1487.76/ 
10377.57 

0/ 
31 

21.49/ 
49.10 

Std. dev 4328.14 2225.32 5.72 6.91 

# of obs 285 
Control Mean 4264.94 6189.61 3.73 31.10 

Min/ 
Max 

637.01/ 
64418.06 

826.51/ 
10323.64 

0/ 
97 

22.05/ 
46.78 

Std. dev 7214.93 2337..62 8.30 6.42 

# of obs 413 
Los Angeles 

Treatment Mean 2934.03 10815.08 0.95 31.74 
Min/ 
Max 

573.14/ 
9782.31 

3178.97/ 
20534.34 

0/ 
22 

15.83/ 
43.78 

Std. dev 2577.52 5215.52 2.50 4.71 

# of obs 512 

Control Mean 2390.07 10517.24 0.70 32.02 

Min/ 
Max 

217.91/ 
10477.39 

4300.83/ 
19347.58 

0/ 
13 

23.49/ 
46.87 

Std. dev 2329.16 4373.58 1.97 4.21 

# of obs 547 



 

 11 

Table 3. Roadway Type Classification in Oakland, San Francisco, and Los Angeles 

Oakland 

 Motorway Primary Residential Secondary Tertiary Unclassified Total 

Treatment 0 0 157 5 1 0 163 

Control 19 25 102 188 135 6 475 

San Francisco 
Treatment 0 0 243 1 41 0 285 

Control 0 0 403 0 10 0 413 
Los Angeles 

Treatment 0 1 528 7 11 0 547 

Control 0 3 427 12 70 0 512 

The second dataset comprises data aggregated similarly, but at the week level for the 31 weeks 
starting Monday, May 11, 2020, and ending Sunday, December 13, 2020. 

Prior to running our analysis, we inspect both datasets for accuracy and outliers. In San 
Francisco, we found two streets which were included in both candidate and treated data from 
SFMTA. We remove those segments (accounting for 27 and 34 segments in treatment and 
control groups, respectively) from the difference-in-difference analysis since treatment status 
could not be firmly established. In the panel analysis, we remove two segments due to island 
and outlier status. In the northeast of San Francisco, we remove one island segment since the 
rest of the segments follow a linear pattern. In the east, we remove one segment due to outlier 
status – this is likely since the segment midpoint in OSM places it close to an intersection, and it 
is likely to catch both east-west (slow street) and north-south (non-slow-street) scooter traffic. 
We also checked our difference-in-difference dataset for outliers but did not identify any. This 
is feasible since the two datasets are aggregated at a different temporal scale and in different 
time periods.  

In Oakland, we remove any control segments which are classified as category one by the 
Oakland DOT from the difference-in-difference analysis. These segments are bike lanes which 
are not on-street and are likely to be geographically inaccurate since segments were snapped to 
the OSM drive network, as well as qualitatively different from on-street treatment and control 
segments. We also remove any bikeways which had not been implemented yet, as well as any 
treatment segments which were not implemented as Slow Streets by the study period. These 
account for 123 treatment segments and 375 control segments. 

In Portland and Los Angeles, we first used a set of unofficial shapefiles since we had not yet 
received official shapefiles from local agencies. In the case of Los Angeles, we did not find any 
discrepancies between our official and unofficial data. However, in Portland, we identified 
several segments we had hand-coded based on unofficial data which were geographically 
inaccurate. Upon receiving detailed official data, we flagged and removed all incorrectly-drawn 
segments (accounting for 95). Therefore, we are confident that all segments we include in both 
panel and difference-in-differences analyses are accurate and without outliers, but in Portland 
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there are some slow streets segments (about 10 percent) which are not included in our 
analysis. Appendix A2 shows the number of segments in the original data and the number in 
each model, by city. 
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Methods 

Approach A: Difference-in-Differences Analysis 

For our difference-in-differences approach, we compare dockless trip volumes on treatment 
and control streets before and after the slow street implementation. Using our screenline 
dockless trip count data, we estimate the following regression: 

𝑇𝑟𝑖𝑝 𝑉𝑜𝑙𝑢𝑚𝑒 = 𝑎 + 𝑏1 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝑏2 ∗ 𝐴𝑓𝑡𝑒𝑟 + 𝑏3 ∗ (𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∙ 𝐴𝑓𝑡𝑒𝑟) + 𝑢  

where 𝑇𝑟𝑖𝑝 𝑉𝑜𝑙𝑢𝑚𝑒 = screenline counts of dockless trips that cross the mid-point of the 
segment for the entire month, 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1 if the segment had a slow street implemented, 0 otherwise 

𝐴𝑓𝑡𝑒𝑟 = 1 for the month after the slow street was implemented (July or November 2020 for 
Oakland and San Francisco, respectively), 0 otherwise 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 ∙ 𝐴𝑓𝑡𝑒𝑟 = Interaction of the Treatment and After indicator variables 

𝑢 = regression error term 

𝑎, 𝑏1, 𝑏2, 𝑎𝑛𝑑 𝑏3 are coefficients to be estimated, and 𝑏3 is our main interest. 

For Oakland, we use July of 2019 and 2020, and for San Francisco and Los Angeles, we use 
November of 2019 and 2020 for the DID analysis. For the months in use, the months are not 
affected by any closure dates in each city’s slow street implementation.  

Approach B: Fixed Effect Panel Regression Model 

Our fixed effect model based on the different implementation dates controls for the issue of 
control group validity. We use later implemented slow streets as the controls for earlier 
implemented slow streets. We estimate a fixed effect panel regression model for San Francisco 
and Portland.  

For the analysis of San Francisco, we are only using the data after week 8 (June 29) for several 
reasons. First, Lime officially restarted its operation during June and July, which makes the early 
period data unreliable. If the number of deployed fleets are too small and the coverage is not 
large enough, we cannot be sure that our estimates are reliable. In San Francisco, normalized 
fleet counts, which measure the deployed scooter fleet each week relative to the maximum 
fleet count over the study period, recovers to about 60% starting from week 8. Moreover, as 
Figure 1 shows, the average trip counts per segment for all our segments showed a sharp 
increase between week 7 and 8. Thus, we consider that week 9 a reasonable starting point for 
panel the analysis.  
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Figure 1. Average Trip Counts by Week in San Francisco 

For Portland, our second study area for the panel model, a large amount of street segments 
was implemented at an early stage (Table 4). However, since the provided Lime data is available 
between May 11th of 2020 and December 13th of 2020, slow streets that were implemented 
before week 1 (May 11) should be removed from our analysis. Moreover, if street segments 
were converted to slow streets on week 1, the segments would not have any changes in the 
treatment status. Since we want to use the ‘before’ treated as controls for the slow street 
implementation, the slow street segments that were implemented in week 1 should also be 
excluded from our analysis. 

 

Figure 2. Average Trip Counts by Week in Portland 
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Table 4. Week Identification and Slow Street Implementation by Week, Portland 

Week of 
Implementation 

Week Starts Week ends Number of segments  
(Total number of 
observation) 

% Cum. % 

Week 0   2020-05-10 227 (7037) 35.69 35.69 

Week 1  2020-05-11 2020-05-17 174 (5394) 27.36 63.05 
Week 3  2020-05-25 2020-05-31 11 (341) 1.73 64.78 

Week 4  2020-06-01 2020-06-07 5 (155) 0.79 65.57 

Week 7  2020-06-22 2020-06-28 9 (279) 1.42 66.98 

Week 12 2020-07-27 2020-08-02 1 (31) 0.16 67.15 

Week 14 2020-08-10 2020-08-16 13 (403) 2.04 69.18 
Week 16 2020-08-24 2020-08-30 188 (5828) 29.56 98.74 

Week 18 2020-09-07 2020-09-13 8 (248) 1.26 100 

TOTAL   636 (19716) 100  

Using our data on dockless trip volumes in San Francisco and Portland, we estimate the 
following fixed effect panel regression model:  

𝑇𝑟𝑖𝑝 𝑉𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 = 𝑎 + 𝑏1 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖,𝑡 + ∑𝛽𝑡 ∗ 𝑊𝑒𝑒𝑘𝑡 + 𝑢𝑖 + 𝑣𝑖,𝑡  

where 𝑖 indicates street segment id and 𝑡 indicates the week id, 

𝑇𝑟𝑖𝑝 𝑉𝑜𝑙𝑢𝑚𝑒 = screenline counts of dockless trips that cross the mid-point of the segment for 
each week,  

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 = 1 if the segment had a slow street implemented, 0 otherwise,  

𝑢 = fixed effect, and  

𝑣 = pure residual 

𝑎, 𝑏1, 𝑎𝑛𝑑 𝛽𝑠 are coefficients to be estimated, and our main interest is 𝑏1 since the 𝛽𝑠 only 
capture the weekly trends. 
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Results 

Approach A: Difference-in-Differences Analysis 

Oakland 

In Table 1, treatment segments in Oakland show decline in counts, from a sample mean of 
108.99 in July 2019 to a sample mean of 12.73 in July of 2020. The control segments in Oakland 
show both a higher mean level of counts and a larger decline, from a sample mean of 289.66 in 
July of 2019 to a sample mean of 24.69 in July 2020. 

Table 5 presents the results of the difference-in-differences (DID) regression fit on the full 
sample in Oakland. The data we originally received includes observations of trip counts for the 
entire month (pre- and post-treatment, respectively) at each segment midpoint during each 
time period on both weekdays and weekends. In our models, we aggregate the data in several 
ways. We have four different times of day observation by weekday and weekend, leading to 8 
models (AM weekday, AM weekend, MD weekday, MD weekend, PM weekday, PM weekend, 
NT weekday, and NT weekend). In the TOTAL column, we sum trip counts for each time of day 
on both weekdays and weekends together, such that each observation represents the full sum 
of trips at a given segment midpoint over the full month. The Overall column represents a 
model where counts are disaggregated such that there is a monthly observation for each 
combination of weekday/weekend and time period at each segment midpoint. 

The coefficient on the Interaction of treatment and after indicator variable (in bold) is the effect 
of the treatment on treated – the impact of slow street implementation relative to the 
counterfactual of the control group. In Oakland, the treatment effect of slow street 
implementation for total trips for the month is an increase in counts of 168.7 per segment, 
which is equivalent to 154.8 percent of July 2019 mean value among those segments (108.99). 
For all times-of-day (AM, MD, PM, NT) and for weekday and weekend, the treatment effect of 
slow street turned out to be positive and statistically significant, as highlighted in Table 5.  

In Oakland, treatment effect was the largest during PM and MD weekday. And the observed 
treatment is weaker in weekend and during morning hours. During weekdays of PM peak 
hours, the treatment segments observed increase in scooter traffic volume of 46.31 trips on 
average per segment, which is 42.5 percent of the pre-treatment mean trip value (108.99). In 
the morning hours, the treatment effects were an increase of 27.93 and 0.82 trips on average 
per segment, for weekday and weekend respectively, which are equivalent to 25.62 percent 
and 0.75 percent of the pre-treatment mean (108.99). For all four different times-of-day, the 
treatment effect was greater for weekday than weekend. 

We note that the after-observation period in Oakland is July 2020, still early in the pandemic 
and during what was, at that time, California’s highest COVID case load peak. We believe the 
large drop in trip volumes in Oakland might in part reflect the early stage of the pandemic, 
including concerns about fomite transmission of the disease which could have dissuaded 
dockless users in ways that would have been less common in November 2020. We note that the 
purpose of the control segments is to provide a control for time trends which include the state 
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of the pandemic. The changes in the trip volumes between two periods for Oakland,  San 
Francisco, and Los Angeles are shown respectively in Figure 3 and Figure 4 and Figure 5. The 
labels represent the raw changes in the trip counts in each segment. The legend and categories 
for changes in trip counts is the same for each map, to give comparability across the three 
cities. For that reason, not all categories are populated equally in each map. 

 

Figure 3. Changes in Trip Volumes from Pre-treatment to Post-treatment in Oakland
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Table 5. Difference-in-Differences Analysis Results, Oakland 
 

Overall TOTAL 
AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

treatment -22.58*** -180.67*** -28.62*** -0.94*** -40.00*** -8.93*** -48.26*** -5.47*** -34.84*** -13.61*** 

(2.33) (41.64) (5.96) (0.24) (8.33) (2.78) (10.27) (1.80) (9.87) (3.48) 

After -33.12*** -264.96*** -39.90*** -1.21*** -58.87*** -13.18*** -69.60*** -7.59*** -57.11*** -17.49*** 

(1.45) (24.53) (4.34) (0.14) (5.13) (1.47) (6.64) (1.05) (5.23) (2.07) 

1.treatment 
#1.after 

21.09*** 168.70*** 27.93*** 0.82*** 37.82*** 7.98*** 46.31*** 4.26** 32.60*** 10.99*** 

(2.34) (41.98) (5.96) (0.25) (8.38) (2.85) (10.33) (1.89) (9.93) (3.62) 

Constant 36.21*** 289.66*** 41.01*** 1.46*** 63.43*** 15.57*** 74.19*** 10.05*** 61.65*** 22.29*** 

(1.45) (24.41) (4.34) (0.14) (5.12) (1.44) (6.62) (1.01) (5.21) (2.00) 

Observations 10,208 1,276 1,276 1,276 1,276 1,276 1,276 1,276 1,276 1,276 

R-squared 0.06 0.11 0.09 0.07 0.12 0.07 0.10 0.05 0.10 0.07 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

Table 6. Difference-in-Differences Analysis Results, San Francisco 
 

Overall TOTAL 
AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

1.treatment -3.60*** -28.83*** -1.26** -0.26** -8.09*** -4.50*** -5.40*** -1.50 -4.15*** -3.67*** 

(0.52) (9.84) (0.52) (0.11) (2.41) (1.69) (1.70) (0.95) (1.45) (1.41) 

1.after -2.62*** -20.98** -2.14*** -0.21* -5.55** -4.38*** -2.94 -0.82 -3.45** -1.49 

(0.54) (10.22) (0.46) (0.11) (2.49) (1.66) (1.84) (1.07) (1.46) (1.61) 

1.treatment 
#1.after 

3.06*** 24.45** 1.25** 0.19 9.00*** 4.49** 3.22 0.67 3.19* 2.43 

(0.61) (11.56) (0.55) (0.12) (2.69) (1.88) (1.99) (1.22) (1.79) (1.91) 

Constant 7.71*** 61.65*** 3.37*** 0.55*** 13.44*** 9.77*** 10.34*** 5.25*** 9.95*** 8.98*** 

(0.47) (8.93) (0.45) (0.10) (2.33) (1.55) (1.61) (0.85) (1.20) (1.11) 

Observations 11,168 1,396 1,396 1,396 1,396 1,396 1,396 1,396 1,396 1,396 

R-squared 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.00 0.01 0.00 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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San Francisco 

In San Francisco, the treatment segments increased from a sample mean of 32.82 to a sample 
mean of 36.29 between November 2019 and November 2020. In contrast, the control segments 
decreased in volumes, from a sample mean of 61.65 to a sample mean of 40.67 during the 
same period (Table 1).  

The pattern in San Francisco is more intuitive: on average, scooter segment volumes decreased 
on control segments while increasing on treatment segments. The pattern in Oakland shows 
that the control segments have higher trip volumes than the treatment segments, in both the 
before and after time periods, and that both the treatment and control groups have, on 
average, large declines after slow streets were implemented.  

 

Figure 4. Changes in Trip Volumes from Pre-treatment to Post-treatment in San Francisco 

The treatment effect in San Francisco is a volume increase of 24.45, on average, per segment 
relative to control segments, which is equivalent to 75 percent increase relative to November 
2019 mean value of segment trip volumes among the treatment in San Francisco (32.82). 
Similar to Oakland, even when we look closer to different times-of-day (AM, Mid-day, PM, 
Night time) and to weekend and weekday, the treatment effect of slow street implementation 
was positive and statistically significant for AM weekday, MD weekday, MD weekend, and NT 
weekday. The treatment effect of slow streets was found to be strongest during mid-day hours 
in weekday with coefficient value of 9.0, which is 168.2 percent increase compared to 2019 



 

 20 

mid-day hour weekday average trip counts per treatment segment (5.35) as shown in Appendix 
A1. The impact was smallest during morning hours weekday, with volume increase of 1.25 on 
average per segment, which is 59 percent increase compared to November 2019 weekday 
morning mean (2.11).  

Los Angeles 

In Los Angeles, treatment segments showed a decline in trip counts (Table 1), from a sample 
mean of 91.44 in November 2019 to a sample mean of 36.01 in November of 2020. During the 
same period, the control segments also showed decline in trip volumes, from a sample mean of 
111.13 to a sample mean of 35.43. While both treatment and control showed decline in scooter 
trips, the drop in control segments (75.7) was larger than the drop in treatment segments 
(55.43).  

The DID analysis results for Los Angeles can be found in Table 7. In Los Angeles, we did not find 
statistically significant impact of slow street implementation on total trip counts, which 
aggregates all different times-of-day and weekend/weekday. However, more refined analysis 
showed some positive and statistically significant impact of slow street implementation. The 
impact of treatment was largest during night-time of weekdays, with coefficient value of 4.55 
meaning that in November 2020, the treatment segments had 4.55 more trips compared to 
November 2019, relative to control group. The results also suggest positive and statistically 
significant impact of slow street implementation during morning peak hours in weekday, mid-
day weekend, and PM peak hours in weekend. Figure 5 shows the changes in trip volumes after 
treatment in Los Angeles.
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Table 7. Difference-in-Differences Analysis Results, Los Angeles 
 

Overall TOTAL 
AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

1.treatment -2.46*** -19.69 -2.30** -0.36* -4.74* -2.03* -2.32 -1.53** -3.92* -2.50 

(0.64) (11.97) (0.91) (0.20) (2.59) (1.15) (1.76) (0.73) (2.30) (2.61) 

1.after -9.46*** -75.71*** -5.90*** -1.14*** -15.24*** -8.25*** -11.24*** -4.76*** -14.29*** -14.87*** 

(0.54) (10.23) (0.80) (0.17) (2.29) (0.97) (1.52) (0.62) (1.97) (2.10) 

1.treatment 
#1.after 

2.53*** 20.27 2.43** 0.24 4.53 2.44** 1.67 1.73** 4.55* 2.69 

(0.68) (12.77) (0.95) (0.22) (2.80) (1.23) (1.86) (0.80) (2.49) (2.75) 

Constant 13.89*** 111.13*** 7.81*** 1.84*** 24.03*** 11.60*** 16.40*** 7.12*** 20.93*** 21.40*** 

(0.52) (9.75) (0.78) (0.15) (2.17) (0.93) (1.44) (0.59) (1.87) (2.01) 

Observations 16,944 2,118 2,118 2,118 2,118 2,118 2,118 2,118 2,118 2,118 

R-squared 0.03 0.05 0.05 0.04 0.04 0.06 0.06 0.05 0.04 0.04 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Figure 5. Changes in Trip Volumes from Pre-treatment to Post-treatment in Los Angeles 

As discussed in our research approach section, we identified several segments in the Los 
Angeles control group and a few in the treatment group which were classified by LADOT as 
modified secondary streets. Table 8 below shows tabulation of roadway type classification of 
Open Street Map and LADOT. Among 1,059 segments, 38 segments are classified as secondary 
streets based on LADOT classification. However, only 2 among 38 segments are classified as 
secondary streets according to OSM roadway type classification. Most of those 38 segments are 
either residential or tertiary, based on OSM classification.   
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Table 8. Secondary Street Classification of All Segments in Los Angeles 

 OSM Roadway Type Classification  

LADOT 
classification 

Primary 
(Control/ 
Treatment) 

Secondary 
(Control/ 
Treatment) 

Tertiary 
(Control/ 
Treatment) 

Residential 
(Control/ 
Treatment) 

Total 
(Control/ 
Treatment) 

Non-Secondary 3 (2/1) 17 (10/7) 67 (59/8) 934 (409/525) 1,021 (280/541) 

Secondary 1 (1/0) 2 (2/0) 14 (11/3) 21 (18/3) 38 (32/6) 

Total 4 (3/1) 19 (12/7) 81 (70/11) 955 (427/528) 1,059 (512/547) 

Under OSM classification, ‘Primary’ refers to primary highway or arterial road and ‘Secondary’ 
refers to a highway which is not part of a major route, but nevertheless forming a link in the 
national route network, major arterial roads. ‘Tertiary’ roads are defined to be roads 
connecting smaller settlements, and within large settlements for roads connecting local 
centers. OSM tertiary roads commonly also connect minor streets to more major roads. Finally, 
‘Residential’ streets are those serve as an access to housing, without function of connecting 
settlements. Residential roads are often lined with housing and they provide access to, or 
within, residential areas but they are not normally used as through routes. 

LADOT Geohub provided roadway classification data, and they classified streets as Alley, 
Collector, Collector Street, Divided Major Highway – Class II, Local, Local Street, Major Highway 
– Class I, Major Highway – Class II, Major Highway Class III, Modified Collector Street, Modified 
Local Street, Modified Major Highway, Modified Major Highway Class II, Modified Secondary, 
Modified Secondary Highway, Private Street, Proposed Collector, Proposed Modified 
Secondary, Scenic Collector Street, Scenic Divided Major Highway – Class II, Scenic Divided 
Secondary Highway, Scenic Major Highway – Class I, Scenic Major Highway – Class II, Scenic 
Secondary Highway, Secondary Highway, Und. Or Prop. Collector Street, Und. Or Prop. Local 
Street, Und. Or Prop. Major Hwy – Class II, Und. Or Prop. Private Street, Und. Or Prop. Scenic 
Mjr Hwy – Class II, Und. Or Prop. Scenic Secondary Hwy, Unknown Type or Closed Street.  

According to LADOT, ‘Local Street’, ‘Collector Street’, ‘Secondary Highway’, ‘Major Highway-
Class II’ takes up 60.87%, 16.47%, 8.88% and 8.81% respectively, which accounts for more than 
95% of all street segments in LA, and all remaining categories accounts for less than 5% of 
street segments in LA.  

According to Table 8 above, among 38 secondary streets (based on LADOT classification), 32 
segments are control segments. However, only two of them are classified as secondary street 
based on OSM classification. Many of them are either residential or tertiary on OSM network. 
For treatment segments, although LADOT said that they did not implement slow streets on 
secondary streets, 6 treatment segments turned out to be on secondary streets. None of those 
streets were classified as secondary streets in OSM network. Rather, they were classified as 
residential streets or tertiary streets in OSM. 
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Based on the roadway type classifications of OSM and LADOT, we perform a second difference-
in-differences analysis after removing the street segments that are classified as ‘secondary’ 
streets by both OSM and LADOT (2 segments). The results can be found in Table 9. Although 
only two segments were removed, which are both from the control group, the magnitude of 
coefficient dropped for all models, and the coefficient of interest for NT weekday regression 
lost its statistical significance.  

Table 10 below shows DID regression results after removing secondary streets that are both 
classified as secondary streets by OSM and LADOT (2 segments) and those that are classified as 
primary by OSM and secondary by LADOT (1 segments). While mid-day weekend model lost its 
statistically significance, the coefficients of overall, AM weekday, and PM weekend model 
remained statistically significant and positive with small decrease in the size of coefficients. 
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Table 9. Difference-in-Differences Analysis Results after removing secondary streets, Los Angeles 
 

Overall TOTAL 
AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

1.treatment -1.67*** -13.36 -1.74** -0.30 -3.02 -1.54 -1.29 -1.21* -2.83 -1.44 

(0.59) (11.12) (0.81) (0.19) (2.29) (1.10) (1.61) (0.70) (2.17) (2.50) 

1.after -8.77*** -70.19*** -5.39*** -1.10*** -13.67*** -7.84*** -10.33*** -4.51*** -13.39*** -13.96*** 

(0.49) (9.20) (0.70) (0.16) (1.95) (0.91) (1.33) (0.58) (1.81) (1.96) 

1.treatment 
#1.after 

1.84*** 14.75 1.92** 0.19 2.96 2.03* 0.75 1.47* 3.65 1.78 

(0.64) (11.97) (0.86) (0.22) (2.53) (1.18) (1.71) (0.76) (2.37) (2.65) 

Constant 13.10*** 104.80*** 7.25*** 1.78*** 22.32*** 11.12*** 15.37*** 6.80*** 19.84*** 20.33*** 

(0.46) (8.69) (0.67) (0.14) (1.80) (0.87) (1.25) (0.55) (1.70) (1.87) 

Observations 16,912 2,114 2,114 2,114 2,114 2,114 2,114 2,114 2,114 2,114 

R-squared 0.04 0.05 0.05 0.04 0.04 0.06 0.06 0.05 0.04 0.04 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

Table 10. Difference-in-Differences Analysis Results after removing secondary and primary streets, Los Angeles 
 

Overall TOTAL 
AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

1.treatment -1.42** -11.39 -1.60** -0.27 -2.67 -1.34 -1.06 -1.09 -2.40 -0.97 

(0.59) (10.96) (0.80) (0.19) (2.27) (1.08) (1.59) (0.69) (2.13) (2.46) 

1.after -8.61*** -68.91*** -5.29*** -1.08*** -13.47*** -7.68*** -10.18*** -4.43*** -13.12*** -13.65*** 

(0.48) (8.98) (0.68) (0.16) (1.92) (0.89) (1.31) (0.57) (1.76) (1.90) 

1.treatment 
#1.after 

1.68*** 13.47 1.82** 0.17 2.75 1.88 0.61 1.39* 3.38 1.47 

(0.63) (11.80) (0.85) (0.22) (2.50) (1.16) (1.70) (0.75) (2.33) (2.60) 

Constant 12.85*** 102.83*** 7.11*** 1.76*** 21.97*** 10.92*** 15.14*** 6.68*** 19.41*** 19.86*** 

(0.45) (8.48) (0.66) (0.14) (1.77) (0.84) (1.23) (0.54) (1.65) (1.82) 

Observations 16,896 2,112 2,112 2,112 2,112 2,112 2,112 2,112 2,112 2,112 

R-squared 0.04 0.05 0.05 0.04 0.04 0.06 0.06 0.05 0.04 0.04 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Robustness Check 

For all three cities, we perform a robustness check in Table 11, Table 12, and Table 13 by 
including the trip-generating covariates jobs per square kilometer (jobdensity), distance to 
downtown (dtdis), number of amenities within 200 meters (amenities), percentage of residents 
aged 15-35 within 1 kilometer, and OSM roadway type (rwtype). After including these 
covariates, we see nearly identical results in effect size and significance. In San Francisco, the 
AM weekend and PM weekday treatment effect becomes significant at the p < .1 significance 
level. In Los Angeles, we use all street segments including those classified modified secondary 
as in our initial DID model. The treatment effect in the TOTAL model, representing monthly 
aggregated counts including all time periods at each street segment, becomes significant at the 
p < .05 level. The mid-day weekday treatment effect also becomes significant at the p < .05 
level. Even after adding covariates which contribute to dockless trip levels, we find a similar 
treatment effect for Slow Street implementation on dockless trips.
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Table 11. Robustness check with covariates, Oakland 
 

Overall TOTAL AM weekday AM weekend MD weekday MD weekend PM weekday PM weekend NT weekday NT weekend 

1.treatment  -5.40 -43.19 -15.23* -0.19 -11.77 0.39 -15.20 1.69 -3.26 0.38 

(3.38) (59.93) (8.49) (0.35) (11.58) (4.12) (14.35) (2.57) (14.55) (4.91) 

1.after  -33.12*** -264.96*** -39.90*** -1.21*** -58.87*** -13.18*** -69.60*** -7.59*** -57.11*** -17.49*** 

(1.38) (22.45) (4.13) (0.13) (4.56) (1.37) (6.16) (0.98) (4.85) (1.89) 

1.treatment 
#1.after 

21.09*** 168.70*** 27.93*** 0.82*** 37.82*** 7.98*** 46.31*** 4.26** 32.60*** 10.99*** 

(2.24) (39.27) (5.73) (0.23) (7.76) (2.64) (9.80) (1.74) (9.30) (3.32) 

jobdensity  0.00*** 0.01*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

dtdis  -0.00*** -0.02*** -0.00*** -0.00*** -0.00*** -0.00*** -0.01*** -0.00*** -0.01*** -0.00*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

amenities  0.43*** 3.42 0.31 0.02** 1.20** 0.26* 0.46 0.15 0.67 0.36* 

(0.15) (2.29) (0.37) (0.01) (0.52) (0.14) (0.62) (0.10) (0.49) (0.19) 

per15to35  0.05 0.42 0.16 0.01* 0.31 -0.11 0.29 -0.10** -0.04 -0.09 

(0.06) (1.08) (0.17) (0.01) (0.22) (0.07) (0.27) (0.05) (0.24) (0.09) 

1.rwtype 
(motorway) 

1.45 11.58 6.69 0.46 5.65 -0.40 2.14 -1.24 -2.93 1.21 

(3.52) (57.00) (9.50) (0.48) (12.33) (2.48) (18.56) (1.82) (11.43) (3.70) 

2.rwtype 
(primary) 

9.87** 78.94 14.97 0.66* 20.16 4.12 14.45 1.99 13.20 9.39** 

(3.95) (62.11) (11.40) (0.38) (13.67) (2.85) (18.48) (2.07) (12.68) (4.21) 

3.rwtype 
(residential) 

-11.30*** -90.44 -3.97 -0.40 -14.23 -6.47** -27.43 -5.88*** -23.85* -8.21** 

(3.45) (57.32) (9.28) (0.34) (12.17) (2.99) (16.98) (2.10) (12.61) (4.06) 

4.rwtype 
(secondary) 

9.96*** 79.64 13.39 0.63** 16.55 6.25** 11.24 3.61* 17.99 9.99*** 

(3.17) (52.25) (8.36) (0.31) (11.18) (2.71) (15.80) (1.99) (11.43) (3.76) 

5.rwtype 
(tertiary) 

7.37** 58.98 8.04 0.40 13.12 3.23 13.22 1.52 12.58 6.86* 

(3.22) (52.10) (7.98) (0.30) (11.19) (2.44) (16.67) (1.88) (11.35) (3.62) 

Constant  31.53*** 252.25*** 28.86*** 0.98** 36.42*** 19.77*** 63.26*** 14.03*** 65.37*** 23.55*** 

(3.99) (69.08) (10.42) (0.42) (14.11) (4.28) (19.19) (2.94) (15.73) (5.56) 

Observations 10,208 1,276 1,276 1,276 1,276 1,276 1,276 1,276 1,276 1,276 

R-squared 0.15 0.25 0.17 0.18 0.30 0.20 0.23 0.20 0.23 0.23 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 12. Robustness check with covariates, San Francisco 
 

Overall TOTAL AM weekday AM weekend MD weekday MD weekend PM weekday PM weekend NT 
weekday 

NT 
weekend 

1.treatment -5.21*** -41.68*** -1.56*** -0.39*** -11.09*** -6.62*** -7.85*** -3.08*** -5.45*** -5.63*** 

(0.64) (11.57) (0.51) (0.13) (3.05) (2.05) (2.05) (1.12) (1.54) (1.58) 

1.after -2.62*** -20.98** -2.14*** -0.21** -5.55*** -4.38*** -2.94* -0.82 -3.45*** -1.49 

(0.48) (8.37) (0.41) (0.09) (2.13) (1.40) (1.53) (0.87) (1.17) (1.30) 

1.treatment 
#1.after 

3.06*** 24.45** 1.25** 0.19* 9.00*** 4.49*** 3.22* 0.67 3.19** 2.43 

(0.57) (10.36) (0.50) (0.11) (2.47) (1.72) (1.81) (1.11) (1.55) (1.73) 

jobdensity -0.00 -0.00 0.00 -0.00 -0.00 -0.00** 0.00 -0.00** 0.00 0.00 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

dtdis  -0.00*** -0.01*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

amenities 0.41*** 3.27*** 0.05 0.04*** 0.67*** 0.46*** 0.56*** 0.32*** 0.53*** 0.64*** 

(0.05) (0.98) (0.03) (0.01) (0.24) (0.16) (0.17) (0.10) (0.14) (0.16) 

per15to35 0.20*** 1.61*** 0.17*** 0.02*** 0.31*** 0.25*** 0.24*** 0.13*** 0.31*** 0.16** 

(0.03) (0.51) (0.04) (0.01) (0.12) (0.08) (0.09) (0.05) (0.08) (0.08) 

2.rwtype 
(primary) 

4.56 36.44 7.22 0.19** 3.41 1.57 16.65* -2.09 4.25 5.24 

(2.96) (41.51) (5.74) (0.07) (7.40) (3.40) (9.74) (2.53) (5.02) (7.86) 

3.rwtype 
(residential) 

13.49*** 107.91*** 1.59* 0.96** 25.47*** 17.11*** 20.55*** 13.34*** 11.38*** 17.52*** 

(1.91) (34.04) (0.84) (0.37) (8.83) (5.79) (6.26) (3.60) (4.21) (5.42) 

Constant 9.41*** 75.24*** 0.51 0.15 18.46*** 14.09*** 11.54** 8.90*** 8.58** 13.01*** 

(1.40) (25.08) (1.31) (0.26) (6.23) (4.31) (4.50) (2.64) (3.62) (3.74) 

# of obs 11,168 1,396 1,396 1,396 1,396 1,396 1,396 1,396 1,396 1,396 

R-squared 0.19 0.27 0.21 0.20 0.22 0.23 0.25 0.26 0.30 0.27 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Table 13. Robustness check with covariates, Los Angeles 
 

Overall TOTAL AM weekday AM weekend MD weekday MD weekend PM weekday PM weekend NT 
weekday 

NT 
weekend 

1.treatment -4.60*** -36.84*** -3.43*** -0.63*** -8.27*** -3.75*** -4.78*** -2.64*** -7.26*** -6.07*** 

(0.53) (8.79) (0.73) (0.15) (1.97) (0.79) (1.36) (0.54) (1.65) (1.95) 

1.after -9.46*** -75.71*** -5.90*** -1.14*** -15.24*** -8.25*** -11.24*** -4.76*** -14.29*** -14.87*** 

(0.45) (7.65) (0.64) (0.13) (1.77) (0.69) (1.18) (0.46) (1.46) (1.60) 

1.treatment 
#1.after 

2.53*** 20.27** 2.43*** 0.24 4.53** 2.44*** 1.67 1.73*** 4.55** 2.69 

(0.57) (9.48) (0.75) (0.17) (2.13) (0.88) (1.44) (0.59) (1.84) (2.10) 

jobdensity 0.00*** 0.03*** 0.00*** 0.00*** 0.01*** 0.00*** 0.00*** 0.00*** 0.01*** 0.01*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Dtdis 
(100m) 

-0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** -0.00*** 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
amenities 0.31*** 2.48* 0.19 -0.02 0.49 0.33** 0.47** 0.24*** 0.28 0.48 

(0.09) (1.46) (0.12) (0.02) (0.32) (0.13) (0.23) (0.09) (0.28) (0.33) 

per15to35 0.10*** 0.83 0.07 0.00 0.23* 0.04 0.23*** 0.04 0.10 0.10 

(0.03) (0.54) (0.05) (0.01) (0.12) (0.05) (0.08) (0.03) (0.10) (0.11) 
3.rwtype 
(residential) 

-32.00*** -256.04** -16.96** -3.42** -49.82** -21.65* -35.34** -14.48** -54.06** -60.31** 

(8.06) (123.65) (8.54) (1.52) (22.34) (12.34) (17.29) (7.31) (27.23) (28.95) 

4.rwtype 
(secondary) 

-13.95 -111.61 -6.60 -1.28 -13.13 -9.13 -15.06 -5.84 -26.63 -33.94 
(8.82) (137.43) (10.00) (1.70) (27.66) (13.28) (19.85) (7.94) (29.15) (30.85) 

5.rwtype 
(tertiary) 

-33.73*** -269.88** -17.94** -3.57** -52.66** -22.18* -38.37** -15.28** -56.87** -63.00** 

(8.12) (124.22) (8.57) (1.53) (22.43) (12.42) (17.37) (7.34) (27.38) (29.09) 

Constant 35.08*** 280.62** 18.36** 4.41*** 53.23** 25.36** 35.78** 16.11** 60.87** 66.50** 
(8.22) (126.34) (8.79) (1.55) (22.98) (12.58) (17.70) (7.48) (27.71) (29.51) 

# of obs 16,944 2,118 2,118 2,118 2,118 2,118 2,118 2,118 2,118 2,118 

R-squared 0.33 0.48 0.40 0.44 0.45 0.51 0.44 0.47 0.48 0.44 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 



 

 30 

Approach B: Fixed Effect Panel Regression Model 

San Francisco 

Table 14 shows the results of San Francisco Fixed Effect Panel Regression model. When we 
compare the trip volumes of slow street segments before and after slow street implementation 
controlling for street segment fixed effects and time fixed effects, we find 1.283 increase of 
trips on average, per segment per week. The largest effect was found for mid-day during 
weekend, with an average of 0.474 increase in trip volumes per segment after slow street 
implementation. We also found positive and statistically significant impact of slow street 
implementation on trip volumes for weekday mornings, weekday PM peaks, and weekend 
nighttime. However, we saw slight decrease in trip volumes after treatment in weekend 
mornings. In the mornings of weekend, scooter traffic decreased 0.063 trips on average per 
segment after slow street implementation.  

 

Figure 6. Change in Average Weekly Trip Counts After Treatment, San Francisco 

Portland 

Table 15 shows the results of the Fixed Effects Panel Regression model for Portland. Similarly, 
we find an overall weekly increase of .982 trips on average per segment. In the disaggregated 
models, we find the largest increase during the weekend night time period of about .462 trips 
per week per segment. We also find increases of 0.268, 0.162, and 0.126 on weekday middays, 
weekday PM peak, and weekend PM peak, respectively. We do find a significant decrease in 
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trips along Slow Streets relative to control streets on both weekday middays of 0.163 trips and 
weekend AM peak of 0.0203 trips. 

 

Figure 7. Change in Average Weekly Trip Counts After Treatment, Portland 
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Table 14. Fixed Effect Panel Regression Model Results, San Francisco 
 

TOTAL AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

treatment 1.283** 0.0613* -0.0631*** 0.0429 0.474*** 0.227* 0.103 0.170 0.267* 

(0.618) (0.0327) (0.0203) (0.141) (0.0938) (0.130) (0.103) (0.111) (0.149) 

Constant 8.555*** 0.350*** 0.193*** 1.642*** 1.389*** 1.193*** 0.891*** 1.404*** 1.494*** 
(0.582) (0.0415) (0.0352) (0.151) (0.115) (0.133) (0.0965) (0.179) (0.136) 

Observations 7,011 7,011 7,011 7,011 7,011 7,011 7,011 7,011 7,011 
R-squared 0.116 0.051 0.031 0.056 0.100 0.047 0.073 0.055 0.093 

# of orig_fid 310 310 310 310 310 310 310 310 310 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

Table 15. Fixed Effect Panel Regression Model Results, Portland 
 

TOTAL AM 
weekday 

AM 
weekend 

MD 
weekday 

MD 
weekend 

PM 
weekday 

PM 
weekend 

NT 
weekday 

NT 
weekend 

treatment 0.932*** -0.002 -0.0203*** 0.268*** -0.163*** 0.162** 0.126*** 0.101 0.462*** 

(0.165) (0.0144) (0.00762) (0.0676) (0.0464) (0.0700) (0.0309) (0.0622) (0.0718) 
Constant 0.00426 -0 -0 0 -0 0 0 -0 0.00426 

(0.0654) (0.00199) (0.000711) (0.0130) (0.00714) (0.0115) (0.00389) (0.0165) (0.0160) 

Observations 7,050 7,050 7,050 7,050 7,050 7,050 7,050 7,050 7,050 

R-squared 0.114 0.030 0.143 0.055 0.049 0.038 0.058 0.070 0.078 

# of orig_fid 235 235 235 235 235 235 235 235 235 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
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Discussion 

The implementation of slow streets in Oakland, San Francisco, Los Angeles, and Portland 
provides a unique natural experiment opportunity that is rarely possible, to observe how travel 
changes when a large infrastructure support is provided unexpectedly and rapidly. We find 
fairly consistent evidence across two empirical approaches – difference in differences and fixed 
effects panel regressions – in a total of four cities.  

 

Figure 8. E-scooter Screenline Counts Before and After Slow Street Implementation  

As Figure 8 shows, mean screenline counts for both treatment and control groups decreased in 
2020 in Oakland and Los Angeles. However, the decrease was larger for the control group in 
both cities. Part of that decrease, particularly in Oakland, is due to the early (July 2020) 
measurement which is during a time when travel was reduced across many modes in the early 
stages of COVID-19 restrictions. We note that the larger decline in the control group in Oakland 
and Los Angeles might suggest differences across those two cities – although that difference 
could simply be the effectiveness of the slow street program in reducing the magnitude of 
dockless trip reductions. In case of San Francisco, screenline trip counts on treatment segments 
indeed increased in 2020 relatively to 2019.  

Even though trip counts dropped for slow streets and control groups in many (but not quite all) 
cases (Figure 8), the evidence from the regression analysis indicates a positive impact of Slow 
Streets on dockless travel relative to the control groups. Recall that the logic of both the DID 
and the panel analysis is to measure changes in trip counts on slow streets relative to the 
changes in the control group. The positive treatment effects that we found indicate that trip 
counts either increased on slow streets or decreased less that did the control group, but either 
outcome is an increase in trip counts on slow streets relative to the control group. The 
magnitude of the impact ranges from 22.16% to 74.5% percent according to the DID regression 
model (Table 16), using the 2019 mean trip counts for the treatment group as a baseline.  
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Table 16. DID Analysis Summary 

 DID treatment 
effect 

2019 mean trip counts 
(treatment group) 

% Change 
2019-2020 

Oakland (TOTAL, July) 168.7 108.99 +54.78% 

San Francisco (TOTAL, Nov) 24.45 32.82 +74.50% 

Los Angeles (TOTAL, Nov) 20.27 91.44 +22.16% 

Table 17. Fixed Effect Panel Analysis Summary 

 Panel 
treatment 
effect 

Pre-treatment 
mean trip 
counts 

% 
Change 

2019 mean trip 
counts (treatment 
group) 

% 
Change  

San Francisco 1.283 5.0337 +25.49% 7.658 +16.75% 

Portland 0.932 0.2692 +346.21% 8.652 +10.77% 
Note: 2019 mean trip counts are adjusted to weekly basis (monthly mean*7/30), 2019 mean trip counts calculated 
using all the treatment segments in San Francisco and Portland 

Table 17 shows effect sizes for the panel analysis treatment effects. The estimated treatment 
effect is shown relative to the pre-treatment mean trip counts (from 2020 data, before slow 
streets were implemented) and from July 2019 data for the treatment group. We prefer using 
the July 2019 mean trip counts (converted to a weekly basis) as the baseline, because that gives 
the treatment effect relative to the generally larger pre-Covid trip counts. We also note that 
comparing the treatment effect to a pre-Covid baseline is more conservative. The DID 
treatment effects in Table 16 are the coefficient on total counts (the specification TOTAL) in 
Table 5 and Table 6 for Oakland and San Francisco respectively and the same coefficient from 
the robustness test for Los Angeles (Table 13). Table 17 shows the treatment effects from the 
panel models for San Francisco and Portland, from the TOTAL specification in Table 14 and 
Table 15 respectively. In the far right of Table 17 we show that the panel estimates give 
treatment effects which range from 10.77% to 16.75% of a 2019 weekly baseline. The 
estimated treatment effect sizes, relative to a 2019 baseline, are also shown in Figure 9. 
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Figure 9. Model Results Summary 

These results are consistent with the larger literature that supportive infrastructure results in 
increases in non-motorized travel. The implementation of Slow Streets occurred quickly and 
unexpectedly, and our use of control groups (either non-implemented candidate streets or late 
implemented slow street segments) provides an opportunity for stronger causal inference than 
is often available. On net, the evidence indicates that Slow Street implementation results in an 
increase in dockless trips.  

However, the analysis has some limitations. The nature of screen line count data does not allow 
an examination of whether the observed increase in scooter traffic on slow streets compared to 
the candidate streets represents new trips or route detouring of trips that would have gone 
elsewhere. Thus, the analysis does not help to understand if people are replacing other travel 
modes, specifically cars, with e-scooter or if people are choosing slow streets over other 
streets. However, either way, the findings provide valuable insights to understand the 
importance of supportive infrastructure on e-scooter usage, and more generally on active 
transport.  

Moreover, for both DID and panel analysis, we did not explicitly consider the time lag between 
treatment and behavioral change. For the DID model which used monthly aggregated trip count 
data, because the analysis is based on July (Oakland) and November (San Francisco and Los 
Angeles), which is after most slow street implementation, any lagged effect might have 
occurred by the time of the “after” measurements. However, for the panel model, even though 
we included time fixed effects, the model does not measure time lags if activity patterns take 
longer to reflect the changes in built environment than the span of the data. Future research 
should consider the effect of such time lags.  

Furthermore, e-scooters might not be effective proxies for other non-car travel modes. As the 
goal of all four cities states, slow streets programs are expected to provide a more supportive, 
safer environment for people to enjoy street spaces including pedestrians, bicyclists, and all the 
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other travel modes. We are not aware of literature correlating bicycle or pedestrian activities 
with e-scooter activities, so e-scooter trip counts cannot be a definitive indicator of all non-car 
modes. However, e-scooter data was the only available data source for empirical analysis, and 
the findings still highlight the importance of supportive infrastructure. If data allows, future 
research should examine the impact of such supportive infrastructure on pedestrian and 
bicyclist activities.   

We believe that this evidence illuminates more than dockless travel. We used dockless trips 
counts as our dependent variable because Lime was able to provide data on dockless travel 
extending back in time to a “before implementation” time period. Thinking about dockless 
scooter trips as an indicator of non-motorized travel generally, we infer that Slow Streets likely 
will increase walking and bicycling. The evidence here supports the hypothesis that 
infrastructure which supports non-motorized travel can (and likely will) lead to increases in 
non-motorized travel. 

Looking forward, we note that the control segments used in the DID analysis in some of the 
cities (particularly Oakland) had higher trip counts than the experimental in the “before” 
period, raising questions about the comparability of the treatment and control groups. Yet we 
note that our robustness tests, including covariates in the DID regression and the panel 
regressions, give results consistent with the uncontrolled DID analysis. While more study in 
other cities would be a welcomed addition to the literature, the evidence here supports the 
importance of Slow Streets in increasing dockless scooter trips.   
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Data Summary 

Products of Research  

Data for the location and implementation dates of slow streets were provided by LADOT (Los 
Angeles), SFMTA (San Francisco), Oakland DOT (Oakland), and PBOT (Portland). Los Angeles 
neighborhood definitions were provided by LADOT. ACS 2018 5-Year Estimates data for resident 
ages as well as a block group GIS layer containing land area data were downloaded as an NHGIS 
extract. LODES 2018 WAC data was used to represent the number of jobs in each block group. 
Downtowns were considered to be the block group (NHGIS) with the highest number of jobs 
(LODES) divided by land area (NHGIS). Amenities data was pulled from OpenStreetMap using 
the OSMnx module in Python on October 5th, 2021. Roadway type classifications were pulled 
from OpenStreetMap using OSMnx as well. Finally, trip count data for each segment-time were 
provided by Lime. 

Data Format and Content  

The research team released a file with the data used for the regression analysis which is 
available from the repository. Variable names are listed in the top row, as well as more detailed 
definitions in variable definition worksheets. Since the data was provided by Lime via an 
agreement which prohibits sharing of sensitive data, we provide a description of the scooter 
trip count variables but do not include them in the public dataset. 

Data Access and Sharing  

Upon a final review and confirmation, the research team uploaded the public dataset to the 
Dataverse depository. The data can be accessed at https://doi.org/10.7910/DVN/GBO9YC.  

Reuse and Redistribution  

Data that is restricted will not be released. The following citation is suggested for reuse of the 
data:  

Boarnet, Marlon; Lee, Seula; Gross, James; Thigpen, Calvin, 2023, "Replication Data for: 
Slow Streets and Dockless Travel: Using a Natural Experiment for Insight into the Role of 
Supportive Infrastructure on Non- Motorized Travel", 
https://doi.org/10.7910/DVN/GBO9YC, Harvard Dataverse, V1   

https://doi.org/10.7910/DVN/GBO9YC
https://doi.org/10.7910/DVN/GBO9YC
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Appendix A1: Mean trip counts of control and treatment group, 
before and after slow street implementation by city and times-of-day  

Oakland 2019 Control 2020 Control 2019 Treatment 2020 Treatment 

AM weekday 41.01 1.11 12.39 0.41 

AM weekend 1.46 0.25 0.53 0.13 

MD weekday 63.43 4.55 23.42 2.37 
MD weekend 15.57 2.39 6.63 1.43 
PM weekday 74.19 4.59 25.93 2.64 
PM weekend 10.05 2.46 4.58 1.25 
NT weekday 61.65 4.54 26.82 2.3 

NT weekend 22.29 4.8 8.69 2.19 

TOTAL 289.66 24.69 108.99 12.73 

# of observation 475 475 163 163 

San Francisco 2019 Control 2020 Control 2019 Treatment 2020 Treatment 

AM weekday 3.37 1.23 2.11 1.22 

AM weekend 0.55 0.34 0.29 0.27 

MD weekday 13.44 7.89 5.35 8.8 
MD weekend 9.77 5.39 5.27 5.38 
PM weekday 10.34 7.4 4.95 5.22 

PM weekend 5.25 4.43 3.75 3.6 
NT weekday 9.95 6.5 5.8 5.54 
NT weekend 8.98 7.48 5.31 6.25 
TOTAL 61.65 40.67 32.82 36.29 

# of observation 413 413 285 285 

Los Angeles 2019 Control 2020 Control 2019 Treatment 2020 Treatment 

AM weekday 7.81 1.91 5.51 2.03 
AM weekend 1.84 0.70 1.49 0.58 
MD weekday 24.03 8.79 19.30 8.58 

MD weekend 11.60 3.35 9.58 3.77 

PM weekday 16.40 5.16 14.08 4.50 

PM weekend 7.12 2.35 5.59 2.55 

NT weekday 20.93 6.64 17.01 7.27 

NT weekend 21.40 6.53 18.89 6.71 

TOTAL 111.13 35.43 91.44 36.01 

# of observation 512 512 547 547 
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Appendix A2: Number of segments received, in DID, and in panel 
analysis 

  Received DiD Panel 

San 
Francisco 

Treatment 312 285 310 

Control 447 413 - 

Oakland 
Treatment 286 163 - 

Control 850 475 - 

Los Angeles 
Treatment 547 547 - 

Control 512 512 - 

Portland 
Treatment 731 - 636 

Control - - - 
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